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RESEARCH MEMORANDUM

FLUTTER AND DIVERGENCE OF RECTANGULAR
WINGS OF VERY LOW ASPECT RATIO

By Robert W. Fralich, Johr M. Hedgepeth,
and W. J. Tuovila

SUMMARY

Slender-body aerodynamic theory is used in conjunction with thin-
plate theory in the flutter analysis of low-aspect-ratio rectanguler
wings of constant thickness when chordwise variations of deflections
ere considered. The spanwise variation of deflection is given by a
parabola, and the chordwise variation is allowed complete freedom. The
results show the variation of fiutter speed and mode shape with aspect
ratio. Compsrisons sre made with results obtained by approximating the
chordwise deflection shape by the first few terms of a power series.
Comparisons with some preliminery experimental results are also included.

INTRODUCTION

The prediction of flutter of wing and tail surfaces of very low
aspect ratio is a problem of some concern to airecraft designers. The
difficulties in the flutter analysis of such surfeces are mainly con-
nected with the presence of large amounts of chordwise curvature in the
flutter mode. It is of interest to lnvestigate the complexity of the
chordwise deflection shape at flubtter and to determine to what degree
of accuracy the chordwise deflection must be represented in order to
obtain good results. This paper is concerned with the flutter behavior,
both theoretical and experimental, of the simple low-aspect-ratio con-
figuration shown in figure 1. The analysis is similar to that of ref-
erence 1, which treated the static divergence behavior of the same
coniiguration.

SYMBOLS
X,¥,2 coordinate system (see fig. 1)
w(x,y,T) wing deflection, positive in z-&irection

w
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v free-stream velocity

t wing thickness

c wing chord

8 wing semispan

T time

F(x,T) chordwise deflection shape
q dynamic pressure, —D-YE

E Young's modulus of elasticity
o] free-stream density of fluid
Pm density of material

T period of oscillation

M Mach number

o(x,y,2,T) perturbation-velocity potential

3
A flutter-speed parameter, 5—“(]_ - p_2)3 5
L E 3
pm'bsl"
K flutter-frequency parameter, 5
x PS5
E mass-ratio parameter, Z —
2 pmt
T8 Poisson's ratio (taken as 1/5 in all computations)
D plate stiffness in bending, Et3/12(1 - p2)
& flutter frequency

THEORETICAL APPROACH

The configuration analyzed in this peper consists of a rectangular
plate of constant thickness centilevered from a rigid wall. (See fig. 1.)
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This plete may be thought of as representing one-half of a wing with a
chord ¢ and a semispan s. The plate is located in a fluid flow wilth
a free-stream velocity V. The deflection shape of such a low-asvect-
ratio plate can be expected to vary in a much more complicated manner
in the chordwise direction than in the spanwise direction. TFor this

reason the deflection Ww is assumed to vary as w(x,y,T) = yeF(x,T),
where the spanwise deflection is given by a simple parabola and the
chordwise variation F of the deflection is an arbitrary function of
the chordwise coordinate x and time 7. The distortions of the plate
are found through the use of ordinary thin-plate theory. The aerodynamic
loadings are found most simply by using slender-body aerodynamic theory.
In this theory streamwise perturbations are neglected in comparison with
perturbations in the crossflow direction. The use of this approximate
aerodynamic theory simplifies the aeroelastic problem to the extent that
an exact solution is possible. A brief description of the analysis and
the resulting equations are given in the appendix.

RESULTS AND DISCUSSION

Some results are given by the boundaries shown in figure 2. The
ordinate is the dynamic-pressure parameter —EZE——
(t/s)°
dynemic pressure, E is Young's modulus of elasticity for +the plate,
and +t/s is the ratio of thickness to semispan. The abscissa 1s the
ratio of chord to semispan c/s. The variation of the dynamic-pressure
paremeter for flutter with the ratio of chord to semispan is dependent upon

, in which q is the

the mass-ratio parameter EEE in which éL is the ratlio of air density
m
to plate density. The flutter boundaries are given for two values of
mass-ratio parameter; the reglon ebove a particular boundary is unstable
wvhile that below is stable. Also shown is the result for static diver-
gence obtained from reference 1. This result, which is, of course,
independent of the mass ratio, is indicated by a single curve. Note
that divergence is less critical then flutter for these particular mass
ratios. Note also that, for the higher mass ratio, the fiutter boundary
consists of a series of loops approsching a constant value of dynamic-
pressure parameter. The lower curve also has this characteristic; how-
ever, the loops are so elongeted in this case that only one can be seen
in this figure.

The kind of flutter mode shapes obtained from the analysis is
shown in figure 3. The top set of curves shows the components of tip
deflection which are in phase and out of phase with the maximum leading-
edge deflection for a value of c¢/s corresponding to the tick mark on
the bottom of the first loop on the flutter boundary in figure 2. The



L <P NACA RM L5T7F2k

tip deflection is given when the leading edge has its maximum amplitude
end at one-quarter of a period laster when the leading edge has zero
deflection. The bottom set of curves gives the components of mode shepe
for a value of c/s given by the tick mark on the second loop of the
flutter boundary of figure 2. The effect of increasing the chord is to
add more waves to the mode shape.

In the results discussed so far, the chordwise variations of deflec-
tions were sllowed complete freedom and an exact solution was possible.
In a vpractical case, an exact solution would not be feasible, and some
sort of approximation of the chordwise deflection shape would be nec-
essary. Sonme flutter boundaries obtained by apvroximating the chord-
wise deflections by the first few terms of a power series are shown in
figure 4. The dashed curve gives the results for parabolic deformations,
and the long-and~short-dashed curve gives the results for cubic deforne-
tions. The exact boundary is also shown for comparison. Both approxi-
metions yleld good results for the lower values of c¢/s. The cubic
approximation is almost exact. For longer chords, however, both approxi-
mations yield poor results. Apparently, In order to analyze the flutter
behavior of wings in this range, higher order terms in the deflection
shape must be used.

It can be seen from figure 2 that for each value of mass ratio =
limiting value of the dynemic-pressure psrameter can be obtained by con-
sidering the values at the bottom of the loops as the chord becomes
large. The variation of this limiting value with mass ratioc is shown
in figure 5. The results obtained so fsr indicate that this curve glves
e conservative estimate of the flubter speed for thin rectangular plates
of very low aspect ratio. It should be noted that the flutter speed is
less than the divergence speed and seems to approach it asymptoticelly
for high mass ratio.

Several preliminary tests of some low-aspech-ratio plates at super-
gsonic Msch numbers have been run in the Langley 9- by 18-inch supersonic
flutter tunnel. The results of these tests are shown in figure 6. The
flubtter speed of the various models is shown as a ratio of experimental
flutter speed to calculated flutter speed, where the calculated flutter
speed was obteined from the curve in figure 5. This ratio is plotted
against the ratio of chord to semispan. The agreement between theory and
experiment is fairly good in view of the approximatlons inherent in the
theory and of the preliminary nature of the tests.

During the tests the flutter modes were observed, and it was noted
that the specimens with the larger ratios of chord to semispan had the
mwore compliczted moce shapes as is predicted by theory.
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CONCLUDING REMARKS

The flutter analysis of low-aspect-ratio rectangular plates indi-
cates that the Tlutter-mode shape has an increasing number of waves in
the chordwise direction as the aspect ratio is reduced; approximating
the chordwise deflection shape by parabolle or cubic curves yields flut-
ter speeds in felr agreement with those of the more exact theory, pro-
vided that the aspect ratio is not too low. The cuble curve gives some-
what better results. For lower aspect ratios, higher order approximations
must be used. Experimental data indicate that the flubter speed and the
type of mode shape yielded by the theory are 1n fair agreement with
experimental results.

Tangley Aeronautical ILeboratory,
National Advisory Committee for Aeronautics,
Iangley Field, Va., March T, 1957.
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APPENDTX
ANALYSIS

In the application of slender-body aerodynamlc theory to the present
unsteady-flow problem, terms containing time derivatives in the velocity-
potential equation for linesrized flow are neglected in addition to those
containing streamwise x-derivatives. The veloclity-potential eguation
thus reduces to Laplace's equation in the crossflow plane. The boundary
conditions on velocity and the pressure-potential relatlons are taken to
be the same as those ordinarily used in unsteady linearized zerodynamic
theory.

The potentlal © and the aerodynamic loads resulting from the
given deformation shape are calculated in a manner similar to that used
in reference 1 for the static-divergence problem.

The principle of minimum potential energy 1s used to derive the
differential equation of equilibrium for the function F(x,T) in a man-
ner anaelogous to that used in reference 1. Solution yields an eigen-

value equetion which relates the flubtter speed to the properties of the
plate and the surrounding sir:

—
i F
2 o 1 .
0 = 64@Bl§Dl cos —%9 + Ej cosh %? cosh %ﬁ + oF sinh %5 sinh %f) +
. 2yc , B2 1, ac c , F2 ac Be
1(D2 sin —%— + = sinh = cosh %; + B cosh 1;-sinh s) (1)

where
i= y-1

D = {2map + MBp + A3 |

E, (A5 + XBB)[éAB - (hya + a4 BE)AQ] +

—
(Aﬁ - R)L?azﬁzAh - (472 + a2 + BE}Ai}
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Fy = (&5 + ?\35)[2@232A4 - (2 + <@ + 52)A3] +

o®p2(a, - ) [21;3 - (b2 + o® + a2)Ah]

Do = -(#1B2 - AgBy)

E2=7{(A5+7\33)[?\<872+88.1—87\-1';1('2512;')—2(7’2-7\)
a.2(A)+ - 7\)|:7\<872 + 83.1 - 8\ + %2__2_&) + 2(72 - 7\)%\1
F, = -7 {(A3 + ABs) [7\(872 + 8a - 8\ + yﬁz %Z') +2(2 - 2)

g2 (Ah_ - 7\)[7\ <872 + 8al - 8\ +

in which

2
_ 100 (4 _ 432 _ 10p .2 2_7\_1@)
Al—-—g—(l k) = 7 +(7 > V12
\2
100 2 _1op.2 (2. gge_)
—-—g—(l W= - == +(7 M=\
A
Bl=%(l-u)7\+('/2—7\)<2?\+K\%_—2-)
A
=R wne (2 - (o - 5T
_ 100 } 20 (4 10 (1 _ 132 o A2
A3——9—(l-u)(l 2u) 3(l u)7\+5(l R)7S + A

B
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by = El (L-p)+22

10, _ .2
B5 = ?; n=-7
2 - .2 K ,"éh
a= =7 —2(7\-8.1)+7-21-—2—

q d
mlﬁb
=
L
<

o

]

>

+

m
i

]

]
1

2Pt
pmﬁsh
K =w)
} D
_ 10 3,
al—?(l-é'rl)

In eguation (1), @ and B can be either real or imaginary quentities.
Solution by trial yields the curves given in figure 2.

The divergence boundary obtained from reference 1 can glso be

obtained from the present analysis by settirg the flutter-frequency
paremeter K equal to zero.

Mode Shapes

The flutter-mode shapes shown in figure 3 can pe optained from the
following equation, where the real part gives the component in phase and

‘...ll!!!.!
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the imaginary pert, the component out of phase with the maximum leading-
edge deflection:

. X ; X s x ; X
1ml = 1m2-§ 1m3 s 1mh_§
C.,e 5 + Coe + Cze + Cpe

f(X) - Cl -+ 02 + 03 + 04

where

Cy = [(me - m,) (ap - m52)A21L-e

- c
. 1(ml+m)__L) g,

(m5 - mo) (ae - muz) Aoz

~i(my+mp ) %]

(m, - =3) (az - %E)Aahe

=1f m- 4 <
Co =[(m3 -ml,_)(az - 12)A51+e ( 1712 ) 5 +

=i c
(my - ™) (az - m32)All+e ozt ) €

-L(mermy) 3 ]

(ml - m5) (a2 - m}_l_z) Ayze

®5 = [(mz.z - mp) (B2 - n,2)aye ) T

-i(mptms) 3

(g - m) (2 - m2)Ape

(mo - my) (o2 - mha)Alae-i(msmh) %]
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-i(nhjﬂm) % .

Cy = [(mz - m5)<a2 - mle)AEEe

2 -3 (mphmy ) §
(ms - ml)<a2 - m, )Al5e ( S &

(ml _ m2) (32 _ m52) Alee_i (m3+ml(.) %:l

i1n which
m =7 + iB
mp =7 - iB

m5="7+id.

m)+=—7—ia.

2
Apq = —l{-aea5 - a2<m.p + mpmg + qu) - bagmm, + mpzmq2

ap =L w
= 10 _5 )
az 3(1 ity

Aporoximate Solutions

The approximate analysis used parallels the analysis for divergence
presented in reference 1. Cubic approximation of the chordwise varia-
tion of deflection results in the following complex determinant:



[A 4 121(\[%]
[34]

1 a0 = 1 10 3 L
[3“?"E] [ﬁ“?‘""“’i”z"

i & 4 i [3€2
[2A+h‘}.c+1ﬂc\]—]2]

[%.A. :-%Q(J.-u)%+1mc\,%75:|

|:15 A+ (8'\ + 359 u) 21 ahk \fgi:l [t A+ (12h + 200) £ ¢ 11|K\E?al:|
‘:%A+{‘l-\+;§(h - 5}1)} g j,%]{ 515}] [%A.p{m.p% (- p)}%.,. 15K\J%"2A:|

PN L0480 b0y 3 & 1 20 3 "
12:] |:5Al{3|9(lb 511)}—:-+1l-:-5+12K:’1—Z- z A+ &1'3-(5'2")%"6-:?+1 X

B}

I:%A-l-loll%:l [§A+%g(2-ll)%l-ﬂ€@‘| [%A+[ﬂ+%(3-2u)}%+6§-+1%x\J@:| [%Aq{%‘*?\+8(3-2u)}%-u-12£+12x

where
A =

20—K2<1+%> e

This equation was solved by trial to obtain the long-and-short-dashed curve in figure 4.

12

<A
e? 12

.

The

equation for parsbolic deformation is obtained from equation (2) by omitting the last column

and last row.

The results for parabolic deformation are shown by the dashed curve of figure k4.

eI T WS VOVN

TT
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CANTILEVER PLATE OF VERY LOW ASPEGCT RATIO

Figure 1

FLUTTER AND STATIC DIVERGENCE BOUNDARIES

- k DIVERGENGE

8l
FLUTTER s
Pt
6}~
q/E .00636
(t7s)° L .000636
21
| l | 1 ]
o} 2 4 6 8 10
c/s
Figure 2

13



1k

L NACA RM I5TF2k

FLUTTER MODE SHAPES
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Figure 3

FLUTTER BOUNDARIES OBTAINED FROM APPROXIMATE
DEFLECTION FUNCTIONS
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Figure 4



NACA RM I5TF2L .

ENVELOPE VALUES OF CRITICAL
DYNAMIC-PRESSURE PARAMETER
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Figure 5

COMPARISON OF EXPERIMENTAL AND CALCULATED FLUTTER SPEEDS
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